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Spatial- and time-domain versions of the unidirectional pulse propagation equation(UPPE) are derived and
compared from the point of view of their practical application in simulations of nonlinear optical pulse
dynamics. A modification of the UPPE suitable for ultrathin optical waveguides, such as submicron silica
wires, is also presented. We show in detail how various, previously published propagation equations follow
from the UPPE in a unified way that clearly elucidates their underlying approximations and areas of
applicability.
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I. INTRODUCTION

Propagation equations have been important computational
tools in many different areas of optics, especially in nonlin-
ear optics. On one side of the spectrum we have numerical
Maxwell’s equations solvers(see, e.g.,[1]) that capture the
light-propagation physics very accurately, but require large-
scale computational resources for most problems. The nu-
merical difficulty of the direct Maxwell’s equations simula-
tion severely restricts the set of problems that can be tackled.
On the other side of the spectrum we have the workhorse of
the nonlinear optics, the nonlinear Schrödinger equation
(NLS) (see[2] for applications in optics), that considerably
reduces the computational effort and works extremely well
for certain propagation problems. However, its computa-
tional simplicity comes at the price of several approxima-
tions that restrict the applicability of the equation. As a con-
sequence, although the NLS often works far beyond what
one would naively expect[1,3], it generally fails for ul-
trashort pulses[4–10].

Considerable effort has been devoted to designing propa-
gation equations that would share the advantages of both the
“raw” Maxwell’s solvers and the “simple” NLS[11–14].
Several types of equations with “correction terms” were de-
rived extending the region of validity of the NLS, while pre-
serving its computational simplicity. In most cases, the basic
idea was to maintain the unidirectional character of the NLS
equation, and relax the quasimonochromatic and slow-
evolution requirements. Most authors concentrated on real-
space representations[11,12,14], but parallel efforts were
made in the spectral[15] and mixed[13] representations as
well. Issues of the time-domain dispersion[16–19], vectorial
character of light[20,21], and nonparaxial propagation were
addressed[6,21,22].

All non-Maxwell pulse propagation equations exploit, in
one way or another, the assumed localization properties of
pulsed solutions that propagate in a nearlyz-invariant way.
The propagation equation then describes the evolution “on
top” of this self-replicating translation. However, different
equations required different approximations to be invoked
for their derivation, and the physical significance of the ne-
glected terms is not always evident. Moreover, for equations
that are derived as perturbation expansions[20,23] in terms
of some small parameters, the question arises about the cor-

rect way to truncate the perturbation series such that a con-
sistent model is obtained.

The goal of this paper is threefold. First, we want to ex-
pand the development we started in Ref.[24], this article
being sort of a long version of the latter. In[24], the unidi-
rectional pulse propagation equation(UPPE) was introduced
that is solved in the time domain, based on initial data given
in the whole[three-dimensional(3D)] space. Here, we add to
this picture the complementary approach, namely a UPPE
version solved in the spatial domain, starting from initial
data given in two spatial and one temporal dimensions, as it
is most usual in optics.

Our second goal is to provide a unifying framework for
all unidirectional optical propagation equations. We show in
detail how various equations can be derived starting from the
UPPE and employingthe same procedurethat clearly eluci-
dates the physical meaning of all underlying approximations,
and also reveals relations between different equations.

Last, but not least, our third goal is to provide a brief but
usable reference for practitioners of numerical nonlinear op-
tics simulations. We identify problems suitable for the time-
and spatial-domain UPPE equations. We also show that the
UPPE can be implemented in an equally straightforward way
as, say, the NLS equation. We emphasize that the wider ap-
plicability of the UPPE does not come with any substantial
computational penalty in comparison with some other, more
restricted equations. Thus, the UPPE should provide a ro-
bust, widely applicable computational tool. Although we do
not discuss technicalities, this paper is also intended as a
guide for implementing practical solvers based on the vari-
ous versions of the UPPE.

The rest of the paper is organized as follows. In the Sec.
II, we specify the types of media for which we derive our
propagation equations. Then, for the sake of concreteness,
we outline a generic model for ultrashort, high-power pulse
propagation in gases and condensed media in Sec. III. Al-
though most equations do not rely on any specific features of
the model, we feel it is useful to provide the reader with a
concrete example. In Sec. IV, the general coupled-mode
equation is derived and serves as a starting point for the
bulk-media UPPEs, and can be used for fiber-like structured
media as well. Section V A shows the derivation of the
z-propagated UPPE in detail. Section V B follows with a
description of its time-domain UPPE counterpart, and Sec.
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V C continues with a discussion of some practical computa-
tional issues. In Sec. V D, we present a UPPE that extends
the generalized NLS, and is suitable for very thin, high-
contrast optical waveguides, such as submicron silica tapers
or silica “wires.” Section VI is devoted to the systematic
derivation of several previously introduced propagation
equations. Here we draw a consistent, unified picture that
connects different equations into a hierarchy, based on their
underlying physical restrictions. Finally, we conclude in Sec.
VII with a brief discussion and a summary.

II. MODEL MEDIUM PROPERTIES

A. Linear medium properties

Our goal is to systematically derive a hierarchy of elec-
tromagnetic field propagation equations suitable for numeri-
cal simulations of optical pulse propagation. We are inter-
ested in approximating localized(in time and space)
solutions to Maxwell’s equations. Such pulse solutions usu-
ally propagate in a well-defined direction which we choose
as the positivez-coordinate axis direction. Therefore, we re-
strict ourselves to a medium with no sharp optical interfaces
crossing thez-coordinate axis, and consider a nonmagnetic,
dispersive medium with relative permitivitye that is a func-
tion of the transverse coordinatesx,y, and of the angular
frequencyv,

e = esv,x,yd, m = m0. s1d

This medium specification includes any dispersive homoge-
neous medium, such as air or water, as well as structured
fiberlike media, such as photonic, microstructured, and ta-
pered optical fibers.

B. Nonlinear material response

Nonlinearity, and other effects beyond the linear chro-
matic dispersion will be lumped in the polarizationP in the
material constitutive relation,

DW = e0e * EW + PW . s2d

The asterisk in this formula stands for the temporal convo-
lution integral, with e being the memory function corre-
sponding toesv ,x,yd. The(nonlinear) polarization is an “ar-

bitrary” function of the electric fieldPW =PW sEW d. We will also
include a current density that is nonlinearly driven by the
optical field

jW = jWsEW d, s3d

for capturing interactions with dilute plasma generated by
the high-intensity optical pulse.

While the derivation of various propagation equations
does not depend on the concrete form of various nonlinear
responses, we next give an example of a generic model that
includes the optical Kerr and stimulated Raman effects, free-
electron generation, defocusing by the generated plasma, and
losses caused by avalanche and multiphoton ionization
(MPI). Such a model, with minor modifications, can be used
for the description of ultrashort optical pulses propagation in

gases[25–41], condensed bulk media[42–46], and in con-
ventional, microstructured, and tapered fibers[47–49], as
well as in ultrathin silica “wires”[50].

The optical Kerr and stimulated Raman effects can be
described in terms of local modification of the optical sus-
ceptibility,

PW = e0DxEW , s4d

that responds to the history of the light intensityI,

Dx = 2nbn2Fs1 − fdI + fE
0

`

RstdIst − tddtG . s5d

Here, f stands for the fraction of the delayed nonlinear re-
sponse andR represents a memory function that describes
the stimulated Raman effect. Often, parametrization in the
form Rstd,sinsVtde−Gt is sufficient for ultrashort pulses
[51]. The advantage of this approach lies in that its easy
implementation does not require calculation of the convolu-
tion integral in the Fourier domain. The convolution
approach must be used in case the memory function is
measured and parametrized in a complicated way, e.g., in
silica [52].

Note that the above expressions neglect the chromatic dis-
persion of the Kerr effect. AlthoughDx may exhibit a finite

memory, it acts on the instantaneous value ofEW only. This
fact greatly simplifies practical calculations. Moreover, there
is only rather limited data available on frequency depen-
dence of the nonlinear coefficientsn2 (see Ref.[53] for
silica). Therefore, the “background” index of refractionnb is
taken to be constant, too, usually at the central frequency of
the initial pulse.

Often, it is necessary to account for the response of the
optical field to the presence of a dilute plasma. Because of
the extremely short times scales implied by the pulse dura-
tion, plasma diffusion and ion motion can be safely neglected
in most cases. Thus, the free-electron densityr is usually
obtained as a solution to an equation of the following type
[35,36,51]:

]tr = aIr + bsId − cr2. s6d

The first term represents the avalanche free-electron genera-
tion, with I being the light intensity, the second term is the
MPI, which is a highly nonlinear function of the intensity,
and the last term describes plasma recombination.

One usually assumes that the collective electron velocity
vW responds to the optical field and, consequently, the total
current density is governed by the following simple equation
(see, e.g., Ref.[54]):

d

dt
jWstd =

e2

me
rstdEW std − jWstd/tc, s7d

wheretc is the electron collision time.This equation can be
solved together with(6) to capture the effects of the plasma
on the propagation of the optical field, namely defocusing
due to plasma and plasma-induced losses. This approach also
captures the linear chromatic dispersion caused by the
plasma.
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Alternatively, one can treat the plasma-induced effects as
a susceptibility modification and lump them with the rest of

PW , which simplifies numerical calculations. The price for this
is that one must neglect the chromatic dispersion induced by

the free electrons. Then,]tPW = jW is interpreted as a component

of the nonlinear polarization time derivative andPW is
approximated by

PW = e0DxplasrdEW = r
ie2

mevRs1/tc − ivRd
EW , s8d

with vR being a chosen reference angular frequency. It needs
to be emphasized that this approximation not only com-
pletely neglects the plasma induced chromatic dispersion,
but also modifies the “correction terms” that we discuss in
the following.

We also treat losses due to multiphoton ionization as non-
dispersive effects. Either an equivalent current(see, e.g.,
[12,54]) or imaginary susceptibility contributions are in-
cluded that correspond to the local rate of free-electron gen-
eration. Note that this is a universally utilized approximation
in the femtosecond pulse propagation area, but if the pulse
spectrum broadens in such a way that new frequencies carry
a significant portion of its energy, the absorption losses(as
well as MPI generation rate) should be frequency selective.

III. INITIAL DATA AND MODAL EXPANSIONS

Most often, the initial data for optical pulse propagation
are given(or approximated) in the x,y,t domain and the
corresponding “initial value problem” is solved in thez di-
rection. We refer to such equations asz-propagated propaga-
tion equations. If, on the other hand, the initial data is known
in the x,y,z domain, equations are solved in the time do-
main, and we term themt-propagated equations. From a
practical point of view, thez- andt-propagated equations are
pretty much equivalent, but thez-propagated versions are
much more popular in the literature. We will therefore
present detailed calculations for thez-propagated equations
and show theirt-propagated counterparts only for the most
important case.

Thus, let our initial data be given in thex,y,t domain.
Then, thex,y components of the electromagnetic field of a
pulse propagating along thez-axis can be expressed as a
superposition of the electromagnetic modal fields

EW sx,y,z,td

HW sx,y,z,td
= o

m,v
Amsv,zd 3H EWmsv,x,yd

HW msv,x,yd
J 3 eibmsvdz−ivt,

s9d

whereAmsv ,z=0d are known from a given initial condition.
The sum runs over all transverse modes and over a discrete
set of angular frequencies, the latter corresponding to a finite,
large normalization “volume”T in the time domain. In what
follows, we use the notation

E dt ;
1

T
E

−T/2

+T/2

dt s10d

for all time-domain integrations, unless integration bounds
are shown explicitly.

The transverse mode indexm is a shorthand notation for
whatever a unique identification of the transverse mode re-
quires. For example, in a homogeneous medium, it includes
two transverse components of the plane-wave’s wave vector
and an index that specifies the polarization.

To keep the notation short, we also use the convention
that if modal fields appear without explicitly showing their
arguments, the time-dependent and propagation phase factors
are understood to be absorbed into modal fields,

EWm ; EWmsv,x,ydeibmsvdz−ivt,

HW m ; HW msv,x,ydeibmsvdz−ivt. s11d

The general orthogonality relation

E zW · fEWm 3 HW n
* − HW m 3 EWn

*gdxdy = 2dm,nNmsvd s12d

will be used below.

IV. COUPLED-MODE EQUATIONS

Having fixed the notation, we proceed with the derivation
of the z-propagated UPPE. First, we follow a textbook
method based on the reciprocity relation that leads to a gen-
eral form of coupled-mode equation. Then, we specialize the
intermediate result for the case of the homogeneous dielec-
tric medium and for the fiberlike geometry. We start from
Maxwell’s equations,

jW + ]tPW + e0]te * EW = ¹W 3 HW ,

− m0]tHW = ¹W 3 EW , s13d

which we scalar multiply by the complex conjugate modal
fields, including their time andz-dependent phase factors
e+ivt−ibmsvdz,

EWm
* · s jW + ]tPW d + e0EWm

* · ]te * EW = EWm
* ·¹W 3 HW ,

− m0HW m
* · ]tHW = HW m

* ·¹W 3 EW . s14d

Let us rearrange both right-hand sides as follows:

EWm
* · s jW + ]tPW d + e0EWm

* · ]te * EW = ¹W · fHW 3 EWm
* g + HW · f¹W 3 EW m

* g,

− m0HW m
* · ]tHW = ¹W · fEW 3 HW m

* g + EW · f¹W 3 HW m
* g, s15d

and use Maxwell’s equations for the complex-conjugate
modes that appear in the last terms,

EWm
* · s jW + ]tPW d + e0EWm

* · ]te * EW = ¹W · fHW 3 EWm
* g − m0HW · ]tHW m

* ,
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− m0HW m
* · ]tHW = ¹W · fEW 3 HW m

* g + e0EW · ]te * Em
* . s16d

Next, we subtract the two equations and integrate over the
wholexyt domain, using the fact that fields vanish at infinity,

E EWm
* · s jW + ]tPW ddxdydt= ]zE zW · fHW 3 EWm

* gdxdydt

− ]zE zW · fEW 3 HW m
* gdxdydt.

s17d

Note that only thex,y components of the pulse field appear
in this equation. Thus, keeping in mind the implicitz,t de-
pendence of the modal field, we insert the modal expansion
(9) and use the orthogonality relation(12) to obtain the evo-
lution equation for the expansion coefficients,

]zAmsv,zd = −
1

2Nmsvd E e−ibmsvdz+ivtEWm
* sv,x,yd · f jWsx,y,td

+ ]tPW sx,y,tdgdxdydt. s18d

V. UNIDIRECTIONAL PULSE PROPAGATION
EQUATION (UPPE)

A. The z-propagated version

The above equation can serve as a starting point for the
derivation of various propagation equations in many sys-
tems, including optical fibers, hollow waveguides, micro-
structured and tapered fibers, and ultrathin silica wires. Here
we specialize it to the case of a homogeneous, dispersive
medium. The eigenmodes are specified by their transverse
wave numbers, polarization indexs=1,2, and apropagation-
direction sign ±,

m; kx,ky,s, ± . s19d

The modal fields are the plane waves

EWkx,ky,s,± = eWs expfikxx + ikyy ± ikzsv,kx,kydg, s20d

HW kx,ky,s,± =
1

m0v
kW 3 EWkx,ky,v,s,±, s21d

whereeWs=1,2 are unit polarization vectors normal to the wave
vector

kW = hkx,ky,kz ; Îv2esvd/c2 − kx
2 − ky

2j. s22d

These formulas allow us to calculate the modal normaliza-
tion constantsNkx,ky,s,±svd [see Eq.(12)]. To make the con-
tact with the numerical solver implementation closer, we
choose to normalize the plane-wave modal fields to a large,
finite volumeLx3Ly3T. The normalization constantNmsvd
then reads

Nkx,ky,s,±svd = ±
kzsv,kx,kzd

m0v
LxLy, s23d

and the evolution equations for the two polarization compo-
nents propagating in the positivez direction are

]zAkx,ky,s,+sv,zd = −
vm0

2kz
e−ikzz

3E dxdydt

LxLyT
eisvt−kxx−kyyd

3eWs · f jWsx,y,z,td + ]tPW sx,y,z,tdg. s24d

Performing the temporal and spatial Fourier transforms leads
to

]zAkx,ky,s,+sv,zd =
v

2ckz
e−ikzzeWs ·F iv

e0c
PW kx,ky

sv,zd

−
1

e0c
jWkx,ky

sv,zdG . s25d

This system of equations determines the evolution of the two
transverse components of the electric field, which can be

obtained asEW kx,ky,+
' sv ,zd=os=1,2 eWs

'AW kx,ky,s,+sv ,zdeikzskx,ky,vdz.
We thus arrive at the homogeneous-medium UPPE,

]zEW kx,ky,+
' sv,zd = ikzEW kx,ky,+

' sv,zd

+ o
s=1,2

eWs
'eWs ·F iv2

2e0c
2kz

PW kx,ky
sv,zd

−
v

2e0c
2kz

jWkx,ky
sv,zdG . s26d

Here,kz=Îv2esvd /c2−kx
2−ky

2, and one has to keep in mind
that the polarization vectorseWs also implicitly depend on the
wave vector. Although this equation describes the transverse
field components only, thez-component of the field can be
obtained from the known transverse components[55] if it is

needed for the calculation of the nonlinear polarizationPW and
of the current densityjW.

We will refer to Eq.(26) as the full,z-propagated UPPE.
Its derivation is formally exact and, naturally, a similar equa-
tion holds for the backward-propagating portion of the field.
However, to close the system of equations for practical cal-
culations, one needs to calculate the nonlinear responses

given by PW and jW, which in turn requires knowledge of the
completefield. Since the whole purpose of unidirectional
equations is to eliminate the need for knowledge of the
“backward-propagating” portion of the field, we have to
adopt an approximation at this point. Instead of calculating

PW sEW d , jWsEW d from the complete field, we approximate these
quantities by their counterparts obtained from the simulated

forward-propagating fieldEW f,

PW sEW d, jWsEW d → PW sEW fd, jWsEW fd. s27d

Put in words, this approximation requires that the field “re-
flected” in the backward direction is weak from the point of
view of generating the nonlinear response. Naturally, the
necessary condition for that is that the nonlinear response is
itself a small perturbation on the background of the linear
medium.
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In many practical applications, thez components of the
field and of the nonlinear response are negligible in compari-
son with the transverse ones. In such a regime, the equation
can be further simplified to a two-component or scalar form.
To this end, the sum over the polarization vectorsos=1,2 eWs

'eWs
is replaced by an identity operator in the transverse(paraxial)
vector subspace. This is a fair approximation, since this pro-
jector acts on the nonlinear term, which itself must be a
small perturbation in view of(27). The scalar form of the
equation then reads,

]zEkx,ky
sv,zd = ikzEkx,ky

sv,zd +
iv2

2e0c
2kz

Pkx,ky
sv,zd

−
v

2e0c
2kz

jkx,ky
sv,zd,

kz = Îv2esvd/c2 − kx
2 − ky

2. s28d

We will refer to this equation simply as thez-propagated
UPPE, since it is actually its most useful form.

B. The t-propagated version

The UPPE solved in the time domain was derived in Ref.
[24]. It is nothing but a projection of Maxwell’s equations
onto forward-propagating half of the plane-wave space, and
in contrast to(26), it describes the spectral amplitudes of the
electric induction vector,

]tDW kWstd = ivskWdDW kWstd + F1 −
kWkW

k2G ·F ivskWd
2

PW kWstdG . s29d

Here,kW is a 3D wave vector labeling the spectral amplitudes

DW kWstd that evolve in time. The “free-plane-wave” angular fre-

quenciesvskWd satisfy the dispersion relation of the given
(homogeneous) dielectric medium,

v2esvd/c2 = k2. s30d

Hence, the first term of the equation is the exact linear propa-
gator written in the spectral representation where it is diag-
onal. The second term on the right-hand side represents the
nonlinear interactions expressed in terms of the polarization.
We have factored out the transverse projection operatorf1
−kWkW /k2g to make it evident that the “initial condition”¹ ·DW

=0 remains preserved during the evolution, as it should.
Note that the structure of the equation is the same as that

of the z-propagated version: The right-hand side consists of
the linear propagator and of the nonlinear response term that
acts as a perturbation to the former. However, here we have

an equation that holds for all three components ofDW . For
practical purposes, one solves the equation for two compo-
nents and only calculates thez component from the diver-
gence equation when needed for calculation of the nonlinear

responsePW .
Just as in thez-propagated case, the equation is formally

exact. Together with its backward-propagating counterpart
they are equivalent to Maxwell’s equations. In practice, and

in complete analogy with thez-propagated version, we close
the system of equations by calculating the nonlinear re-

sponsesPW from the forward-propagating field only, thus ap-
proximating

PW sDW d, jWsDW d → PW sDW fd, jWsDW fd. s31d

Note that, unlike in thez-propagated case, we solve the non-
linear material constitutive equation for a given vector field

DW and express the polarizationPW as its functional. This is in
the spirit of most numerical Maxwell’s equations solvers

whereEW , needed for the time-derivative evaluation, is calcu-

lated fromDW .
One can see that the physical nature of the underlying

approximation, expressed in Eqs.(27) and (36), is the same
in both thez and t-propagated versions of the UPPE. That
makes these equations essentially equivalent from the point
of view of how accurately they capture the pulse propagation
physics. There are, however, practical issues that make one
or the other equation better suited for a given purpose. We
briefly discuss these computational aspects in the next sec-
tion.

C. t-propagated versusz-propagated equation:
Computational issues

For most practical purposes, especially when one intro-
duces additional approximations(e.g., scalar field, axial sym-
metry, etc.) the two approaches are practically equivalent.
Both are very large systems of coupled, nonlinear ordinary
differential equations(ODE’s) with highly oscillatory solu-
tions. Available ODE solver libraries can be used, although
such “canned” routines are often written with relatively
small systems of equations in mind, and may use more
memory space than is actually necessary. We have not no-
ticed a big difference between numerical efforts required for
the two UPPE versions, at least in the “paraxial situations.”

The difference between the two becomes more appre-
ciable in a regime of extreme focusing and/or when the vec-
tor effects are not negligible. Thez-propagated version only
gives us the transverse fields and though the longitudinal
component can be calculated from these, this is more com-
plicated than in thet-propagated version. Thus, in such a
regime, thet-propagated equation is more straightforward to
implement.

Calculation of the nonlinear responses is another aspect in
which the z- and t-propagated equations pose different re-
quirements. In both versions, it is computationally conve-
nient to introduce a moving frame of coordinates that follows
the center of the pulse, usually with the velocity equal to the
group velocity of the initial pulse.(Note that if chromatic
dispersion is strong and spectral broadening occurs, prefer-
ably on one side of the spectrum, it may be advantageous to
adjust the moving frame velocity accordingly.) Very often
the evolution of the pulse is relatively slow in the moving
frame, and the adaptive integration stepDz can be signifi-
cantly longer than the temporal length of the computational
domaincT (multiplied by the speed of light). This is not a
problem in thez-propagated version, since the whole history
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of the optical field is available at everyz and the nonlinear
response is straightforwardly calculated along thet axis of
the computational domain. On the other hand, in the
t-propagated equation, the responsePsx,y,z,td is normally
calculated at each spatial location. If the response exhibits
memory, such as the stimulated Raman effect, or plasma
generation, previous “time slices” of various quantities that
contribute to the response, e.g., the plasma density
rsx,y,z,t−Dtd, must be kept in memory. This approach
works well as long as the integration stepcDt is on the
micron scale. However, if the slow evolution of the pulse
allows a very long integration step, such thatcDt is larger
than the size of the computational domain along thez-axis,
Lz, nonlinear responses must be calculated differently. This is
because in the moving frame the past value ofrsx,y,z,t
−Dtd transforms intorsx,y,z−vgDt ,t−Dtd, which may be
located outside of the computational domain ifvgDt is suffi-
ciently large. Fortunately, under such circumstances one can
safely replacersx,y,z,t−Dtd by its current-time value on the
same “characteristics”rsx,y,z−vgDt ,td, which is always
available in the computational domain. This is possible be-
cause the long integration step is only achievable when the
evolution of the pulse is relatively slow and, consequently,
this mapping of the local history onto the spatial profile is by
default a good approximation. Then, the calculation of the
response proceeds along thez axis and thus becomes essen-
tially the same as in thez-propagated equation.

To summarize the above discussion, thez-propagated
UPPE is preferred in most conventional pulse propagation
situations. On the other hand, when severe focusing occurs,
and when capturing the full vectorial nature of the optical
field is required, thet-propagated UPPE is more suitable.

To conclude this section, it may be worthwhile to describe
briefly the numerical approaches to solve, say, Eq.(28). As
pointed above, these equations represent a large system of
ordinary differential equations. Besides the large number of
equations, an important feature to consider is that in this case
it is especially expensive to evaluate the right-hand side, i.e.,
the derivatives of the spectral amplitudes]zEkx,ky

sv ,zd with
respect to the propagation variable(z or t). Namely, to obtain
the polarization in Eq.(28), one has to perform the transfor-
mations between the spectral representation of the field and
the real-space representation of the field. Then, the nonlinear
responses, such as Kerr or Raman effects, are calculated at
each point of the computational domain in real space and can
be “collected” into the polarization or current density. This
response calculation step is essentially just an implementa-
tion of the medium model described in Sec. I B. Once the
responses are known in the real-space representation they are
transformed back into the spectral-domain representation,
and all propagation derivatives can then be evaluated and
passed to the ODE solver.

The volume of computations necessary for the right-hand-
side(RHS) evaluations is much larger than that of relatively
simple calculations done by the ODE driver. Therefore, we
only parallelize the RHS evaluation and use a single-
threaded ODE solver. This greatly simplifies the parallel ex-
ecution synchronization: Roughly speaking, it is sufficient to
place synchronization barriers around the spectral trans-
forms.

One of the decisions to make when implementing the
solver is to choose a method to control the adaptive ODE
solver. We usually employ a conservative approach and com-
pare two solutions obtained with a coarse and finer step size.
Less expensive approaches are certainly possible, for ex-
ample, monitoring maximal intensities and/or plasma densi-
ties, which correlate well with the computational effort
needed to resolve the solution properly, is one simple way to
control adaptive integration step. However, it requires some
“tuning” of the step-change decision thresholds and can fail
to sufficiently decelerate the solver in some extreme self-
focusing situations.

D. Optical waveguidez-propagated UPPE

Recently, very thin tapered fibers and submicron diameter
silica wires[50] have attracted much attention. These high-
contrast waveguides exhibit very small mode areas that de-
pend strongly on the frequency. Since the frequency depen-
dence of the modal fields is completely neglected in the
generalized NLS equation that is commonly used for
microstructured-fiber simulation, the new waveguides, such
as silica wires, will in certain situations require an improved
propagation model. We describe such a model in the follow-
ing.

Let us restrict the propagated pulse to the fundamental
mode of the straight cylindrical waveguide of radiusa, and
write the electric-field modal expansion in terms of thenor-
malizedmodesfNmsvd=1g as

EW st,r,f,zd = o
v

Csv,zdEWsv,r,fde−ivt+ibsvdz. s32d

Here, the fundamental mode electric-field components are

Ea = Masr,vdfasfd, a = r,f,z, s33d

wherefasfd stands for cosine and/or sine functions, depend-
ing on polarization and components, e.g.,

1Er

Ef

Ez
2 = 1Mrsr,vdcossfd

Mfsr,vdsinsfd

Mzsr,vdcossfd
2expf− ivt + ibsvdzg. s34d

Using a frequency-dependent parametrization for the mate-
rial index of refraction, one can calculate the modal fields
and the corresponding propagation constants exactly over the
desired range of frequencies.

For the relatively low intensities typical for supercon-
tinuum generation in microstructured silica fibers, the non-
linear material response is due to the optical Kerr and stimu-
lated Raman effects. They generate the polarization

Pasr,f,t,zd = e0Dxsr,f,t,zdEasr,t,zdfasfd, s35d

with

Dxsr,f,t,zd = 2nbn2o
a

fa
2sfdEa

2sr,t,zd * Rstd s36d

being the local susceptibility modification andRstd the nor-
malized Kerr and Raman response function.
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We insert these expansions into Eq.(18) and perform in-
tegration over the azimuthal angle to obtain

]zCsv,zd = ive0nbn2

3E
0

a

rdr E dte+ivt−ibsvdzo
ab

Ma
* sv,rd

3Easr,t,zdKabfEb
2sr,t,zd * Rstdg, s37d

where a is the radius of the waveguide strand andKab

=e0
2p dffa

2sfdfb
2sfd is the angular overlap integral. This is

the z-propagated UPPE specialized for the ultrathin wave-
guide, such as submicron silica taper or a silica wire. The
generalization for two polarization components is obvious: It
amounts to two coupled equations of the same type for the
expansion amplitudesCasv ,zd ,a=1,2, with the coupling
through the angular overlap integralsKab

ab . Of course, one can
include the higher-order modes the same way.

The most important difference from the generalized NLS
is that this equation takes into account the full frequency
dependence of the modal fields. The NLS is obtained readily
when one elects to replace the frequency-dependent modal
fields by a fixed radial profile at a chosen reference fre-

quencyV: MW sv ,rd→MW sV ,rd. Then, the radial integration
can be factored out, resulting in the nonlinear coefficient

g = e0nbn2E
0

a

rdro
ab

KabuMa
* sV,rdu2uMbsV,rddu2,

s38d

and the equation reduces to the NLS in the spectral represen-
tation.

We have studied the regimes of pulse propagation in ul-
trathin silica wires and tapered fibers when the deviations
between the generalized NLS solutions and solutions ob-
tained from the above improved equation become significant.
These issues will be discussed in a separate work. Here, we
only want to point out some computational issues, important
for the practical implementation of a solver based on
Eq. (37).

From a numerical simulation point of view, the radial in-
tegration is the main complication, because it cannot be per-
formed before the spectral transformations of the response
are calculated as functions of radius. Indeed, the resulting
simulator is roughly an order of magnitude slower than its
generalized NLS counterpart. Fortunately, since the modal
fields within the core are rather smooth functions of radius, a
very simple integration scheme that employs relatively few
sampling points turns out to be sufficient. A Gaussian inte-
gration scheme with eight radial samples works well. Thus,
the nonlinear response is calculated in the same way as for
the NLS for each radial sampling point, and the correspond-
ing responses are then “collected” during the radial integra-
tion. It is therefore quite straightforward to upgrade the con-
ventional(spectral domain) NLS solver to thez-propagated
thin-waveguide UPPE equation.

VI. DERIVATION OF OTHER EQUATIONS FROM UPPE

There are several types of unidirectional propagation
equation widely used in the nonlinear optics literature. The
most prominent examples are those of the nonlinear
Schrödinger(NLS) equation[2], nonlinear envelope equa-
tion [11] (NEE), first-order propagation equation[12] (FOP),
forward Maxwell’s equation[13] (FME), and several other
equations that are closely related to these. The derivations
found in the literature differ from equation to equation, and
in some cases the physical meaning of the required approxi-
mations becomes hazy in the multitude of neglected terms.
In the following section, we show that all previous propaga-
tion equations are in fact special cases of the UPPE, easily
obtained using the same, uniform procedure that clearly
identifies what physical effects get neglected in the process
of derivation.

A. General procedure

First, we adopt a scalar approximation and write Eq.(28)
in the form

]zEkx,ky
sv,zd = iKEkx,ky

sv,zd + iQPkx,ky
sv,zd, s39d

where

Kskx,ky,vd = Îv2esvd/c2 − kx
2 − ky

2 s40d

and

Qskx,ky,vd =
v2

2e0c
2Îv2esvd/c2 − kx

2 − ky
2

s41d

are the plane-wave propagation constant and nonlinear cou-
pling coefficient, respectively. For envelope equations, we
express the field in terms of an envelope by factoring out the
carrier wave at a chosen reference angular frequencyvR with
the corresponding wave-vectorkR=Ks0,0,vRd,

Esx,y,z,td = Asx,y,z,tdeiskRz−vRtd, s42d

and similarly for the nonlinear polarization. Then, as a first
step, we replaceK andQ by suitable approximations. These
approximations are usually Taylor expansions in frequency
and transverse wave numbers. At that stage, one can easily
identify the additional approximations required for the given
equation. In the second step, we transform the new equation
into the real-space representation, which is formally done by
replacing the spectral variables ofK and Q by differential
operators acting on the envelope,

sv − vRd → i]t ikx → ]x iky → ]y. s43d

Also, thez derivative in the envelope representation goes to

]z → iksvRd + ]z. s44d

Finally, we transform to the frame comoving with the group
velocity of the pulse to obtain the desired equation. Thus,
different equations are obtained from different approxima-
tions of the linear propagatorK and of the nonlinear coupling
Q. Apart from factoring out the carrier wave, the procedure
is the same for a nonenvelope equation.
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At this stage we can see the approximations that are com-
mon to all UPPE. They are those that were needed to obtain
Eq. (28).

First, the optical field generated in the backward direction
has to be so weak that the nonlinear response calculated from
the forward-propagating field is an accurate approximation
of the actual response. The obvious problem with this ap-
proximation is, of course, that it is nota priori clear in a
concrete situation whether it holds or not.

Second, we essentially work with scalar equations, even
in the case of equations that couple two transverse compo-
nents. Namely, unless thez components of the field and of
the nonlinear response are completely included, the diver-
gence condition in Maxwell’s equations is not properly re-
flected in a unidirectional propagation equation[21]. In some
cases this becomes evident already at the first step, when an
equation is derived starting from the wave equation and the

¹W ¹W ·EW term is already neglected[56].

B. Nonlinear Schrödinger equation

This is the simplest case in which we choose a reference
angular frequencyvR and the corresponding reference wave
numberkR=ksvRd, and take

K < kR + vg
−1sv − vRd +

k9

2
sv − vRd −

1

2kR
skx

2 + ky
2d.

s45d

This is a second-order Taylor expansion inv and kx,ky
aroundvR and s0,0d. In the nonlinear coupling coefficient,
we neglect all variable dependencies and take its value at the
reference frequency,

Q <
vR

2e0nsvRdc
. s46d

For simplicity, in the NLS we only account for the instanta-
neous optical Kerr effect, and write the nonlinear polariza-
tion envelope as

P = 2e0nsvRdn2IA. s47d

Inserting the above expression into(39) and (42) we obtain

]zA + ikRA = ikRA + ivg
−1sv − vRdA +

ik9

2
sv − vRd2A

−
i

2kR
skx

2 + ky
2dA +

ivR

c
n2IA. s48d

It is customary to normalize the envelope amplitude such
that uAu2= I. Using rules(43) we finally obtain the NLS equa-
tion,

s]z + vg
−1]tdA =

i

2kR
D'A −

ik9

2
]ttA +

ivR

c
n2uAu2A.

s49d

The above derivation procedure made very explicit what ap-
proximations, beyond that specified in(27) and discussed in

the previous subsection, need to be implemented to obtain
the NLS: ApproximatingK to second order in frequency and
transverse wave number amounts to the paraxial, and quasi-
monochromatic approximations for the linear wave propaga-
tion. The approximation in the nonlinear couplingQ also
requires a narrow spectrum. The slow variation of the enve-
lope, usually invoked in the NLS derivation, appears here
only as an implicit consequence of the narrowness of the
spatiotemporal spectrum.

C. Nonlinear envelope equation

As in the case of the NLS equation, the NEE is paraxial.
However, in the temporal domain, the NEE goes far beyond
the NLS equation. Formally, the NEE requires very little
additional approximation in the temporal domain, and it ap-
pears to be extremely close to the paraxial version of UPPE.

Indeed, we take

K < + ksvd −
c

2vnbsvRd
skx

2 + ky
2d, s50d

so that the only approximation apart from paraxial is the
constant index of refractionnbsvd→nbsvRd in the denomi-
nator of the diffraction term.

Further, the first term in the above approximation is reex-
pressed as a sum of its two lowest-order Taylor expansion
terms plus the rest,

ksvd = ksvRd + vg
−1sv − vRd + Dsv − vRd, s51d

where

Dsv − vRd = o
n=2

` S ] nk

] vnD
v=vR

sv − vRdn

n!
. s52d

For the nonlinear coupling term, we preserve the fre-
quency dependence, but neglect the transverse wave-number
dependence completely,

Q <
sv − vRd + vR

2e0cnsvRd
. s53d

Here, as in the free-propagation term, we neglect the chro-
matic dispersion of the background index of refraction. The
spectral representation of the equation then reads,

]zA + ikRA = ikRA + ivg
−1sv − vRdA + iDsv − vRdA

−
ic

2vRnsvRd
S1 +

v − vR

vR
D−1

skx
2 + ky

2dA

+
ivR

2e0cnsvRd
S1 +

v − vR

vR
DP. s54d

After transforming into the real-space representation, we ob-
tain the NEE,

]zA + vg
−1]tA = iDsi]tdA +

i

2kR
S1 +

i

vR
]tD−1

D'A

+
ikR

2e0nb
2svRd

S1 +
i

vR
]tDP. s55d

To summarize, the additional approximation needed in this
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case is paraxiality both in the free propagator and in the
nonlinear coupling, and a small error in the chromatic dis-
persion introduced when the background index of refraction
is replaced by a constant, frequency-independent value in
both the spatiotemporal correction term and in the nonlinear
coupling term. Note that the latter approximation is nothing
to worry about: It is such a small effect that in practice there
will almost certainly be other, much weaker aspects of the
model, such as the plasma equation, neglected nonlinear dis-
persion, and uncertain MPI parameters, to name a few.

D. Partially corrected NLS

The partially corrected NLS(PC-NLS) equation is similar
to the NEE. It is obtained from the UPPE in the same way,
with the only difference being the approximation adopted in
the spatiotemporal focusing term. Namely, the correction
term of the free propagator in Eq.(54) is replaced by its
first-order expansion,

S1 +
v − vR

vR
D−1

< S1 −
v − vR

vR
D , s56d

which leads to the equation

]zA + vg
−1]tA = iDsi]tdA +

i

2kR
S1 −

i

vR
]tDD'A

+
ikR

2e0nb
2svRd

S1 +
i

vR
]tDP. s57d

Thus, it may seem that the PC-NLS is quite close to the
NEE, but that is not the case. The dispersion properties of
their respective plane-wave solutions are quite different.
While the PC-NLS provides better-than-NLS approximation
around the reference frequencyvR, its dispersion properties
become rather pathological aroundv<2vR, where its dif-
fraction term changes sign as a consequence of the truncated
correction factor. As a consequence, PC-NLS should only be
used when the pulse spectrum remains narrow. If the spec-
trum broadens too much, artifacts in the angular distribution
of the spectrum occur around and beyondv<2vR.

E. First-order propagation equation

Unlike the above examples, the(FOP) equation, intro-
duced by Geissleret al., [12], is not an envelope equation. It
is, however, equivalent to the NEE from the point of view of
the approximations required for its derivation, as we shall
see shortly. Though it is not at all necessary, we neglect the
linear chromatic dispersion to obtain the same equation as
Geissleret al.

In Eq. (28), we approximate

K <
v

c
−

c

2v
skx

2 + ky
2d and Q <

v

2e0c
, s58d

which is the same approximation as the one in the NEE, only
with vacuum in the role of the linear medium. Thus, Eq.(28)
becomes

]zEkx,ky,v =
iv

c
Ekx,ky,v −

ic

2v
skx

2 + ky
2dEkx,ky,v +

iv

2e0c
Pkx,ky,v,

s59d

which is equivalent to Eq.(2) of Ref. [12]. After transform-
ing into the real-space domain, we arrive at the FOP equa-
tion,

S]z +
1

c
]tDEsr',td =

c

2
D'E

−`

t

dtEsr',td −
1

2e0c
]tPsr',td.

s60d

It is clear from the above calculations of the NEE and
FOP equation that, despite the rather different ways they
were originally derived, these two equations become equiva-
lent if one chooses to treat the dispersion properties of the
medium on the same level.

F. Forward Maxwell equation

The FME, introduced by Husakou and Herrmann[13], is
another nonenvelope equation that is therefore free of any
reference frequency. It was derived in an intuitive way from

the wave equation with a neglected¹¹W ·EW term, though it
was written in a vector form. We therefore start its clean
derivation from the fullz-propagated UPPE. However, the
“zeroth” step is to discard the projectoros eWs

'eWs, which gives
us essentially the same starting point as for the equations
discussed above, only that we have a(coupled) z-propagated
UPPE for each component. This tells us that the resulting
equation will still be essentially a scalar one, meaning that
the vector nature of light is not captured completely cor-
rectly, and the reason for this is traced back to the neglected

¹¹W ·EW . This “drawback,” however, becomes “justified” in the
next step, where we approximateK and Q by its paraxial,
and zero-order expansions, respectively,

K < ksvd −
c

2vnbsvd
skx

2 + ky
2d Q <

v

2e0cnbsvd
. s61d

In this paraxial formulation, the equation is limited to the

regime in which the polarization scrambling term¹¹W ·EW does
not play any important role.

Note that the above approximations forK andQ are ex-
tremely similar to those for the NEE. Here, the chromatic
dispersion of the index of refraction is(correctly) preserved.
The resulting equation is then obtained by transforming to
real space in the transverse coordinate only, keeping the
spectral frequency-time representation,

]zEsx,y,v,zd = iksvdEsx,y,v,zd +
i

2ksvd
D'Esx,y,v,zd

+
im0vc

2nbsvd
Psx,y,v,zd. s62d

This equation is equivalent to the FME Eq.(2) of Ref. [13].
The only difference is that we have not changed to the mov-
ing frame coordinatesj=z,h= t−z/c, because in the disper-
sive medium it is computationally more convenient to use
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the frame that moves with a suitablegroup velocity, an im-
portant detail in strongly dispersive medium.

Thus, formulas(50), (53), and(61) show that there is very
little difference between the FME and NEE. Actually, the
most convenient way to solve the NEE is in the spectral
domain, where the correct frequency dependence of the
background index of refraction can be taken into account—
that way the NEE becomes equivalent to the FME.

G. Correction terms and reference frequency

To conclude this section, we would like to point out the
relation between what are sometimes called “correction
terms” and the reference frequency and reference wave vec-
tor that appear in envelope equations. In the present context,
the correction terms are understood as “deviation” of a
propagation equation from the NLS. Spatiotemporal focusing
terms[16] and self-steepening terms[18] are most common
examples that appear in the equations discussed above, but
there are also perturbation approaches found in the literature
that sometimes lead to numerous correction terms.

In all envelope equations a reference frequency and a ref-
erence wave number appear, and are mostly chosen equal to
the central frequency and wave number of the input pulse.
These quantities are artificial and to a certain degree arbitrary
“gauge” parameters that, of course, do not appear in the
Maxwell’s equations. Therefore, any resulting solutions
should not depend on how the reference is chosen. This may
not be the case if the reference is selected too far from the
central frequency of the pulse, or when the spectrum be-
comes too broad due to nonlinear interactions. The correc-
tion terms were introduced into equations to achieve a
broader a applicability of the resulting equation. One way to
view such corrections is that the additional terms partially
restore the equation’s invariance with respect to the choice of
the reference frequency. For example, the spatiotemporal fo-
cusing correction term(operator) vR

−1f1+1/vR]tg−1 that ap-
pears in the NEE equation and modifies the diffraction term
seems to depend on the referencevR, but it is in fact propor-
tional to the “gauge-independent”v−1, provided it is prop-
erly implemented in the spectral domain.

This observation hints at a simple but rarely performed
check of numerical simulations based on envelope equations:
A comparative simulation run performed with a shifted ref-
erence frequency(i.e., sufficiently different from the pulse
carrier frequency) will readily reveal what part of the simu-
lated spectra can be trusted.

VII. CONCLUSION

We have presented several versions of the UPPE. The
time-domain UPPE, originally proposed in Ref.[24], is
suited to situations when extreme(self-) focusing occurs, and
when the longitudinal field and nonlinear response compo-

nents are not negligible. This equations bridges the gap be-
tween the numerical Maxwell’s equation solvers on one side,
and a family of unidirectional propagation equations, on the
other.

The z-propagated UPPE is the propagation equation of
choice for most situations occurring in high-power femtosec-
ond pulse propagation in bulk condensed and gaseous media,
when the typical transverse filament size is sufficiently larger
than the wavelength.

We have also presented az-propagated UPPE suitable for
strandlike waveguides with transverse dimensions compa-
rable to the wavelength, in which the modal field profiles
strongly depend on the frequency.

Many propagation equations previously published can be
derived from the UPPE. The derivation follows the same
procedure independently of the given equation type. Namely,
various equations are obtained by selecting appropriate addi-
tional approximations in the UPPE. That way, the propaga-
tion equations can be categorized based on the captured
physics, rather a on the way they are originally derived. This
approach readily reveals in what situations one should expect
the equation to work well or to fail. It also reveals that some
equations published originally in different representations are
actually equivalent under certain conditions.

Moreover, viewing the variety of propagation equations
from the same point of view, with the UPPE as their origi-
nation point, also shows a previously unrecognized meaning
of various “beyond the NLS correction terms.” Such terms,
designed to improve the NLS equation and extend its validity
into the realm of ultrafast pulses and of extreme spectral
broadening, can be understood as corrections that “repair”
the NLS’s dependence on the choice of the reference fre-
quency. For example, the NEE equation, though it explicitly
containsvR, turns out to be almost reference independent,
which is indicative of a “good equation.” On the other hand,
when corrections are treated as series expansions, the desired
“gauge invariance” with respect to.vR can be badly broken
even at frequencies not far fromvR.

Finally, we note that thez-propagated UPPE can be
solved with the same ease(or difficulty) as, say, the NEE or
even the NLS, in the spectral domain. Ordinary differential
equation solvers can be utilized and work well with this
equation. The numerical solver can be easily implemented
for fibers, radially symmetric geometries or full 3+1 dimen-
sional simulations. Since the UPPE can be viewed as the
“minimal approximation” unidirectional equation, it presents
itself as a robust, universal simulation tool.
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